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Soft Matter and Food Sciences share many common features. Gels, emulsions, foams, 
suspensions, … are typical classes of soft materials investigated in Soft Matter. Foods are 
obvious examples of soft materials with everyday relevance, and it is well accepted that 
concepts and methods developed for research on soft condensed matter can serve to 
understand and study of their complex behavior. Numerical, theoretical and experimental 
investigations need cover a broad range of complementary space and time scales in order 
to achieve a complete description of the systems. Furthermore, a common goal of Soft 
Matter and Food Sciences is the rational design of functional advanced materials. To do 
so, Soft Matter and Food Sciences develop similar strategies based on the assembly of 
several building blocks (bio-sourced in food science and also synthetic for soft matter 
research in general) through either thermodynamic principles of self-assembly or out-of-
equilibrium kinetically arrested organization. 

Although differences in terms of language still exist, many soft matter physicists have 
started to work on food-related topics, highlighting the scientific interest of such 
multidisciplinary approach. 

The objectives of this SoftComp topical workshop is to highlight the connection 
between soft matter and food research through exchange, sharing and broadening of 
know-how between the two communities. 
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Claire Berton-Carabin 
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The microstructures at different length-scales are very important for the properties and functionality of 
foods. Several techniques are required to image the microstructure at different length-scales 
dependeing on the physical conditions of the food. In this talk, different examples on the coupling 
between microstructure and properties will be given. In addition, the principles, advantages and 
limitations of some powerful microscopy techniques useful for foods will be presented.  
 

Two different aspects of structure dynamics will be discussed in this talk. They involve building up of 
structures as well as dynamics in terms of molecular diffusion. Diffusion is vital for many food 
properties such as water management in pasta and pastry products, oil migration induced fat bloom in 
chocolate and oral taste release. These examples show that it is important to have good control over 
the diffusion properties to obtain desired functionality. Therefore, thorough understanding of structure - 
mass transport relationships at different length scales in the structure and good measurement 
techniques for global and local for diffusion are essential. In this talk, the coupling between structure 
and diffusion1 at different length scales in Foods and soft porous heterogeneous materials will be 
discussed. 
 
Quantitative confocal microscopy allows for simultaneous determination of the detailed microstructure 
at micrometer level and local quantitative information regarding mass transport, electrostatic 
interactions, rheological properties etc. A brief overview of different microscopy-based techniques to 
characterize local diffusion will be given in this presentation. Confocal laser scanning microscopy 
(CLSM) in combination with Flourescence recovery after photobleaching (FRAP)1 or raster image 
correlation spectroscopy (RICS) are versatile methods to determine quantitative diffusion properties 
locally directly in the microscope. They can be used in many types of soft porous homogeneous and 
heterogeneous foods and biomaterials. A new powerful FRAP technique that gives precise 
measurements on the local diffusion coefficient will be presented2. In addition, determination of the 
interplay between flow and diffusion using microscopy, FRAP and RICS3 will be presented.  
 
Food properties change as a function of time and surrounding conditions. CLSM-FRAP combined with 
different stages to control surrounding conditions is powerful to monitor kinetics. Here, results on 
microstructure and probe diffusion in phase separated biopolymer mixtures determined by FRAP and 
NMR diffusometry will be presented4. The effect of the characteristic wavelength and the equilibrium 
concentration on the diffusion in bicontinuous phase separated biopolymer mixtures will be 
demonstrated using quantitative microscopy and Lattice-Boltzmann simultations. In addition, the effect 
of confinement on the phase separation kinetics will be discussed5. Results that reveal the effects of 
charge density, size and concentration on diffusion of negative probes in positively charged β-
lactoglobulin gels will be presented6.  
 
 
References 
1] Lorén et al. (2015) Quarterly Reviews of Biophysics 48, 3 (2015), pp. 323–387. 
[2] Röding et al. (2018) Manuscript. 
[3] Schuster et al. (2016) Soft Matter DOI: 10.1039/c6sm00294c 
[4] Wassén et al. (2014) Soft Matter DOI: 10.1039/c4sm01513d 
[5] Wassén et al. (2013) Soft Matter, 9, 2738 
[6] Schuster et al. (2014) Biophysical J., 106, 253 – 262. 
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Many food products contain two or more immiscible gas or liquid phases, with one or more phases 
dispersed in another as bubbles or droplets, forming foams (e.g., coffee foam), emulsions (e.g., 
mayonnaise, dressings, dairy drinks) or aerated emulsions (e.g., ice cream). An important feature of 
these systems is the large interfacial area that exists between the different phases, up to several m2 
per millilitre of dispersed phase. This fluid interface has to be physically stabilised with emulsifiers, 
which facilitate the break-up of droplets (or bubbles) during homogenisation, and contribute to the 
metastability of the systems post-homogenisation, by preventing coalescence. For food applications, 
two main categories of emulsifiers exist: Low molecular weight emulsifiers (LMWEs), and amphiphilic 
biopolymers, the latter category being mostly represented by proteins. Recently, interest has also 
been rising in using biobased particles with dual wettability instead of conventional emulsifiers, which 
can stabilise foams or emulsions through a Pickering mechanism [1]. 

A number of challenges may be encountered when attempting to design food dispersions with 
controlled properties. A first, obvious one, is to prevent the rapid physical destabilisation of the 
systems (e.g., flocculation, coalescence) which leads to unacceptable aspect and texture. A second 
one is to ensure the chemical stability of the systems; many food emulsions contain chemically labile 
molecules (e.g., polyunsaturated lipids, vitamins, phytochemicals), which can be damaged by 
oxidative reactions, leading to a deterioration of the sensory and nutritional quality. A third one is to 
control the digestive fate of emulsions, for example, to delay digestion such that satiety feelings are 
enhanced [2]. Interestingly, all of these challenges are related to the properties of the interfacial layer. 
It is thus of utmost importance to control the composition and structure of fluid interfaces in multiphase 
food systems. 

Such a control is, however, intrinsically difficult. First, most food systems have a complex composition, 
including many surface-active molecules, that partition between the available phases and may 
compete for adsorption at the interface. Often, the amount of emulsifiers used is much higher 
compared to what is strictly needed for complete interface coverage, which implies that a large excess 
of non-adsorbed emulsifiers remains in the continuous phase; and that the overall composition of 
surface-active species does not necessarily reflect the composition of the interface. Second, the 
interfacial composition may evolve in time, with, e.g., interfacial protein polymerisation, or adsorption 
of chemical degradation products. And in addition, even when one is able to determine the 
composition of the interface, its structure still has to be unravelled, which may include lateral phase-
separated domains, aggregates, multilayers, etc. 

It is thus necessary to determine the composition and structure of fluid interfaces in multiphase food 
systems, which can be achieved through different approaches [3]: (i) in real systems (e.g., emulsions), 
with non-destructive methods; this refers mostly to a range of microscopy or spectroscopy techniques; 
(ii) in real systems, after phase separation (e.g., separation of the cream and aqueous phases of 
emulsions, followed by analysis of the separate phases); (iii) in model dispersions, e.g., foams or 
emulsions produced with microfluidics, which allows for high control of the production conditions, and 
investigation of interface stabilisation at short time scales; and (iv) on model, two-dimensional 
interfaces (air-water or oil-water), which allows for measurement of e.g., the rheology of the formed 
layers, their thickness, or their topography. Combining different approaches is needed to obtain a 
comprehensive description of such complex fluid interfaces, which can, in turn, help designing 
multiphase food systems with controlled properties. 

 
References 
[1] Berton-Carabin & Schroën. Pickering emulsions for food applications: Background, trends, and 

challenges. Annu. Rev. Food Sci. Technol., 2015, 6, 263-97. 
[2] Corstens et al. Food-grade micro-encapsulation systems that may induce satiety via delayed 

lipolysis: A review. Crit. Rev. Food Sci. Nutr., 2017, 57:10, 2218-44. 
[3] Berton-Carabin et al. Formation, structure, and functionality of interfacial layers in food emulsions. 

Annu. Rev. Food Sci. Technol., 2018, 9, 551-87. 
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Light scattering techniques are excellent tools to study both structure and dynamics in soft materials. 
For food systems, which are often characterised by complex structures and a broad range of motions 
both of molecular, supramolecular or colloidal structures, light scattering can be particularly useful for 
understanding the systems. Moreover, light scattering techniques can be used to characterise the 
rheological properties of soft matter and this can be particularly useful in systems that are sensitive to 
standard rheological testing.  

In this presentation, I will provide an overview of how different light scattering techniques and 
approaches can be used to characterise the state of a particular soft material as well as the transition 
between different states. Important examples will include complex fluid mixtures, polymer solutions, 
polyelectrolytes, gels and glasses, both where the key building blocks are molecular, supramolecular 
or colloidal.  
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Gelation, although commonly utilized in the design and production of food may issue several 
experimental challenges to the rheologist. The transformation from a liquid to a solid response asks 
for a wide sensitivity range of the rheometer, while slip due to syneresis compromise the data, shear 
deformation change the gel structure for good or bad, or gel fracture might terminate the rheological 
experiment instantaneously. But what, if the gel undoubtfully can be seen, touched, and deformed but 
the rheological data are not sophisticated at all? [1] Using two mucus-based systems, hagfish slime 
and sputum from cystic fribrosis patients, the rheology of low viscous but highly elastic materials will 
be discussed [2, 3]. The high water holding capacity of mucin generates a dilute viscous gel and 
simultaneously provides a widely spanning network structure introducing the elasticity to the sample. 
In Figure 1 the influence of sample, electrical, and inertia torque are discussed as one of the limiting 
factors in oscillatory measurements. Similar problems such as slip layer formation, rheometer 
sensitivity and inhomogeneous sample structure are discussed for hagfish slime, which is composed 
from mucus and long intermediate filaments. In a final step, the use of elongational measurements will 
be discussed as option for samples unsuitable for rotational or oscillatory experiments. 

 
Figure 1: Rheology of cystic fibrosis sputum. Frequency sweeps depicting G’ (storage modulus and G” (loss 

modulus). The blue dashed line indicates the calculated instrument inertia limit (taken from [2]). 
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Emulsions are widely used in various applications like cosmetics, food... Indeed, mixing liquids or 
polymers is a well-known method to obtain new materials with combined and improved properties. 
The latter, are determined not only by those of the individual constituents, but also by the morphology 
that results from the combination of phase separation and interfacial properties especially when they 
are loaded with particles. Since the pioneering work of Pickering and Ramsden, it is well-known that 
particles can be very efficient stabilizers of emulsions, blends, and foams. Even centimetre size 
droplets can be stabilized by an adsorbed particle layer, which shows that the underlying stabilizing 
mechanism differs between systems stabilized with relatively large particles and with molecular 
surfactants. This talk will review interesting features of these particle-stabilized, so-called Pickering, 
emulsions by showing their structural and rheological properties. In particular water/water emulsions 
can be stabilized by particles and form a new class of stable emulsions making them potential 
candidates for food products. 
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Increasing plant protein content in human diet constitutes a world challenge to meet protein needs of 
the growing world population. However, the assembly properties of such proteins are poorly 
understood as compared to their dietary animal counterparts. This limits their use as ingredients in 
food matrices. Most of plant proteins are storage proteins which are synthesized in seed and have to 
be efficiently stored and dehydrated during seed development. The overall objective of our research 
activities is to investigate the driving force of plant storage proteins assembly and the influence of their 
primary role of storage on their structure and functionality. Through this talk, we will first show using 
computational predictors that amino-acid sequences of plant proteins are predicted to be more 
disordered than globular animal proteins such as whey or egg proteins. Looking in more details in 
plant protein sequences reveals that most of them contain low complexity regions comprising polar 
and/or charged amino acids which are mostly predicted disordered. Then, we will discuss how protein 
flexibility as well as charge anisotropy can affect the assembly of protein-polysaccharide and protein-
protein. We will compare two globular proteins: lysozyme, an egg-white protein, and napin, a rapeseed 
protein. Lysozyme and napin are very similar in terms of molecular weight and charge density but 
differ in their surface charge distribution as well as in their intrinsic flexibility. Finally, we will discuss 
how the use of model polypeptides can help to unravel the role of intrinsic disorder in plant protein 
self-assembly.  

 



Oleogels in complex composite samples 
Paul S. Clegg1 

1 School of Physics & Astronomy, University of Edinburgh, Edinburgh, UK 
 

E-mail contact: paul.clegg@ed.ac.uk 
 
 
Sitosterol and oryzanol self-assemble to form very firm gels in a range of organic solvents. [1] 
Unfortunately, due to the formation of sitosterol hydrate crystals, these gels are unstable in the 
presence of water, prohibiting the dispersal of water droplets throughout the gel matrix. We 
demonstrate that by using glycerol as the polar phase rather than water, droplets may be dispersed 
throughout the oil phase without disrupting the self-assembly of the gel.[2] As increasing volumes of 
water are added to the glycerol, the G0 values decrease. This can be correlated to both a drop in 
water activity, and also the stability of the fibrils in the presence of glycerol compared to water, as 
elucidated by molecular dynamics simulations. At high glycerol loadings, multiple emulsions are 
observed to form. 

We further demonstrate that by mixing the phytosterol-ester oryzanol with lecithin in an organic 
solvent, both components may be dispersed at much higher concentrations than they may be 
individually. [3] Dynamic light scattering and molecular dynamics simulations show that the 
mechanism for this is the formation of mixed micelles. Infrared spectroscopy and simulations suggest 
that these micelles are formed due in part to hydrogen bonding of the phosphate of the lecithin head-
group, and the phenol group of the oryzanol. Rheology shows that by mixing these materials at an 
equimolar ratio, highly viscous suspensions are created. Furthermore, by adding water to these 
samples, a solid-like gel may be formed which offers mechanical properties close to those desired for 
a margarine type spread, whilst still solubilizing the oryzanol. 
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Water-in-Oil-in-Water (W1/O/W2) emulsions are made of oil globules (O) dispersed in an aqueous 
phase (W2), with the globules themselves containing aqueous droplets (W1). Generally, their stability 
is ensured by two surface-active species of opposite solubility (oil-soluble and water-soluble). As food 
products, these materials have many technological assets. Due to their compartmented structure, 
they can be used to encapsulate active species in the inner droplets and to control their delivery 
towards the external phase. They may also allow reducing the caloric intake without compromising 
taste. Fat in partially replaced by an aqueous phase, while tricking our tongue into thinking we are still 
eating a product with a full fat, creamy flavor. Despite these advantages, only a few commercial 
products based on double emulsions have been developed so far. The main difficulty with double 
emulsions is the mastering of their complex kinetic evolution. This complexity is naturally arising from 
their internal dynamics which are due to the liquid state of the components. However, their behavior is 
now quite well understood and significant advances has been made to improve their formulation and 
functional properties. Once fabricated they can become trapped in deep metastable states, allowing 
storage for several months with minimal leakage of the encapsulated species. Because they are 
made of soft matter, essentially liquids, there are many possible strategies to disassemble the 
comparted structure and to trigger delivery on demand. 

The purpose of this lecture is to emphasize recent developments. This will be illustrated by two 
examples: 

-  A gelation process based on the osmotically driven water flux between the two aqueous 
compartments of double emulsions [1]. We first prepare fluid water-in-oil-in-water (W1/O/W2) 
double emulsions whose external aqueous phase contains hydrocolloids and/or proteins at 
moderate concentration. The initial osmotic pressure in the innermost droplets is considerably 
larger than that in the external phase. An inward water transfer thus occurs in order to restore 
osmotic equilibrium. In the initial state, the globules are large and so the transfer is slow because 
of the limited exchange surface area. The emulsions are then submitted to a short and intense 
shear that provokes globule breakup, in order to increase the rate of water diffusion. As a 
consequence, the initially fluid materials undergo a sudden rheological transition. During that 
process, the hydrocolloids and/or proteins are concentrated in the continuous phase until a point 
that a gel is formed. The proposed approach demonstrates a simple, yet versatile and adaptable 
solution for making texturized emulsions with reduced fat content and limited amount of 
hydrocolloids/proteins. 

- The design double emulsions devoid of lipophilic surfactant, based on the use of a crystallizable 
oil and proteins. Simple W1/O emulsions stabilized solely by fat crystals are first prepared by 
dispersing the W1 aqueous phase in a surfactant-less fat phase at a temperature above its 
melting range, followed by cooling down to trigger bulk fat crystallization. The resulting W1/O 
emulsions are arrested systems that are stable against gravitational and colloidal instabilities 
upon storage. The primary emulsions are in turn dispersed in a highly viscous external aqueous 
phase containing proteins to obtain W1/O/W2 emulsions. The resulting materials have enhanced 
properties compared to conventional double emulsions including i) very slow passive delivery of 
the encapsulated species, ii) resistance to osmotic stress, iii) resistance to coalescence, and iv) 
thermo-responsiveness as the double globules could release the inner droplets’ content upon 
warming. We generalize the concept to the preparation of air-in-oil-in-water multiple emulsions.  
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Figure: Cross-sectional view of a TAG nanoplatelet 
showing epitaxial molecular packing in the [001] 
direction 
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Fats and oils are extremely useful natural products which are widely used in foods, cosmetics and 
industrial applications.  As the concern for the environment and health grows, consumers are 
demanding more natural, green and sustainable materials in everyday consumer products. Fats and 
oils are complex multicomponent mixtures of triacylglycerol molecular species.  The nature of these 
molecular species are a function of both fatty acid composition and distribution within the TAG 
molecule. The purpose of this talk is to discuss the structure of fats and oils, from constituent TAG 
molecules to the crystals they form. Upon crystallization, TAG molecules form lamellae (shown in 
blue), which stack to form a highly asymmetric nanoplatelet with about ~8 TAG lamella (Figure 1)1. We 

have been able to engineer the thickness of these 
nanoplatelets by using specific surfactants and 
affecting the surface energy and surface nucleation 
behavior of TAGs on these crystalline 
nanoplatelets2. These nanoplatelets rapidly 
aggregate into colloidal structures of differing 
morphologies and size depending on external 
fields and concentration, forming networks which 
are responsible for the binding of oil, water vapour 
barrier properties, and mechanical properties of the 
fat.  Our work has focused on developing and 
understanding of the functionality of fats from a 
structural perspective.  Early work focused on the 
quantification of structure using small deformation 
rheological techniques. More recent work has 
focused on the use of scattering methods, in 

particular Ultra-Small Angle X-ray Scattering at synchrotron facilities to quantify atomic scale structure 
to mesoscale structure simulataneously, in a non-destructive fashion3. Increasing public concerns over 
excessive saturated and trans fat intake from manufactured food products has lead to the search for 
alternative strategies to structure liquid oils into semisolid fats without addition of large amounts of 
unhealthy trans and saturated fats.  Surfactant-like small molecules have been shown to self-
assemble into long fibrils, effectively causing oil gelation at concentrations as low as 0.5%.  
Phytosterols, ceramides, waxes and 12-hydroxystearic acid have been shown to be effective 
organogelators.  Liquid oils can also be structured by microencapsulation within multilamellar vesicles, 
with walls composed of monoglyceride hydrates in the alpha-gel state.  The surface potential of these 
monoglyceride vesicles is then adjusted so as to maximize inter-vesicle interactions and the formation 
of a cellular solid with oil-filled cells. These monoglyceride gels have recently been proven to have 
excellent functional characteristics in baking applications as well as for omega-3 oil stabilization.  
High-molecular weight polymers such as ethylcellulose have also been successfully used by our group 
to gel oil in the absence of water.  This development of a polymer-stabilized organogel is very 
promising since these polymers are widely available and are food-grade.  The development of a new 
way to make fat exploiting the self-assembly properties of food-grade molecules is at hand.  A final 
perspective of future challenges will be offered. 
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Natural protein sources often display a huge complexity, being composed of a blend of polypeptides of 
various molecular weight, pHi and charge density. Gluten, the proteins extracted from wheat flour is 
one of such. Gluten is widely used for its viscoelastic properties as an improver of cereal products 
(bread, pastry, etc.). It is composed of two classes of proteins, named gliadin and glutenin, similar in 
their amounts in glutamine (30%) and proline (10%). The more than 25 different polypeptides 
belonging to the gliadin class are hard to fractionate into individual components because of high 
redundancy in the primary sequences. Glutenin are in the form of polymers made from several distinct 
polypeptides concatenated through inter-chain disulfide bonds. Their molecular weights are evenly 
distributed from 100 kg/mol to 7,000 kg/mol. 
While it is well established that gliadin confers viscosity to gluten whereas glutenin polymers are at the 
origin of its elastic resistance, the interactions existing between both classes of gluten protein remain 
unknown. We previously showed by SLS and multi-angle DLS that gluten proteins suspended in 
ethanol/water (50/50, v/v), a theta solvent, includes large proteins assemblies (26,000 kg/mol, Rh 100-
128 nm) displaying an internal dynamic. To get a better insight of the composition of those 
assemblies, we combined biochemical and physicochemical approaches. On the one hand, gluten 
proteins suspended in ethanol/water were fractionated by Asymmetrical- Flow-Field-Flow 
Fractionation (A4F) coupled to UV, SLS and QELS detectors. On the other hand, gluten proteins were 
partitioned by liquid-phase decomposition in respect with temperature. Protein composition of 
partitioned phases and eluting fractions recovered from A4F were characterized by size-exclusion 
chromatography. Consistent results were obtained demonstrating a specific interaction between 
omega-gliadin and glutenin polymers. The work illustrates how a detailed analysis of the phase 
behavior of a complex blend of proteins may reveal their supramolecular assembly states.   
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The study of triacylglycerols (TAGs) in their molten state is of fundamental importance for a deeper 
understanding of TAG-crystallization processes, being highly relevant for both, manufacturing and medical 
applications. Whilst different models have been proposed to explain the nanostructured nature of the fluid state 
of TAGs, none of them are fully satisfactory. In this paper, we propose a new model consisting of positionally 
uncorrelated lamellar TAG-assemblies embedded in an isotropic medium, that assist as pre-nucleating 
structures. This model was validated by applying a novel global fitting method, resulting in excellent agreement 
with the small angle X-ray scattering data. Deeper analysis of the scattering patterns at different temperatures, 
both in cooling and heating direction, allowed us further to detect crystalline traces of TAGs even after heating 
to 40 °C, and record on cooling the onset of crystallization at 30-25 °C. The application of the presented novel 
model not only explains the outstandingly structured fluid of molten TAGs, but also lays the basis for analysing 
first crystallization steps in greater detail, which is outlined in our follow-up study ‘Global Small-Angle X-ray 
Scattering Data Analysis of Triacylglycerols in the α-Phase (Part II)’ [1]. 
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Native globular whey proteins are sensitive to heat treatment above their denaturation 
temperature. Heating induces molecular changes, leading to an activated non-native protein form that 
is able to self-aggregate. Depending on the processing conditions (pH, ionic strength, protein 
concentration, heating temperature and heating time), various types of protein aggregates are 
obtained.1 

In this talk, we will describe whey protein microgels (WPM), a peculiar type of aggregate 
obtained upon heat treatment slightly above the IEP of whey proteins.2 The WPM are characterized by 
fairly spherical shape, narrow polydispersity, high surface charge density and particle size ranging 
from 200 to 400 nm. These features confer milky appearance and colloidal stability upon storage to 
WPM dispersions. The internal structure of WPM is maintained by hydrophobic/hydrogen bonds and 
disulfide bridges. This allows high physical and chemical stability of these new ingredients in various 
subsequent food processes.3 

We will show how WPM can be concentrated using microfiltration in order to reach high 
protein contents while keeping the system liquid. The thermal stability of WPM in presence of salts as 
well as their use as whitening agent in low fat coffee creamers will be presented.4 Whey protein 
microgels can also be used to stabilized Pickering-type of emulsions close to their IEP.5 Finally, we will 
discuss the use of these colloids as texture modulators in whey protein acid gels.6 
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Food oral processing as the bridge between transformation of food structure during consumption, 
eating behaviour, sensory perception and food acceptability has gained enormous interest in the last 
decades. An overview of the interplay between food structure, oral processing and eating behaviour, 
sensory perception and hedonic evaluation of foods is provided comparing different consumer groups. 
To design foods which are targeted to different consumer groups, food structures and its oral 
breakdown properties should be matched with preferred behaviour to optimize pleasure upon 
consumption. 

It is demonstrated that food oral processing depends on both food properties and consumer 
characteristics. Consumers strongly adapt oral processing behaviour with respect to bite size, 
consumption time, and eating rate to rheological and mechanical properties of liquid, semi-solid and 
solid foods. Liking and familiarity influence oral processing behaviour, but by a considerable lower 
degree than rheological and mechanical properties. Correlations between instrumental texture 
properties of solid foods and oral processing behaviour provide guidance on parameters that are likely 
to produce ‘faster’ and ‘slower’ versions of foods. This demonstrates how food texture modifications 
can be applied to moderate eating rate and energy intake. 

It is shown how age, gender, and ethnicity affect oral processing behaviour of liquid, semi-solid and 
solid foods differently. Consumer groups adapt eating rate in different ways by modifying bite size, 
consumption time or both. Parameters describing oral physiology explain differences in oral 
processing behaviour between groups only to a limited extend. Other oral physiological and cultural 
factors might contribute more to differences in oral processing behaviour between groups. While age, 
gender and ethnicity can influence oral behaviour, bolus properties do not necessarily differ between 
groups suggesting that although oral behaviour may vary somewhat between groups, similar bolus 
properties can be reached. However, large differences in oral behaviour between groups (fast and 
slow eaters) lead to considerable differences in bolus properties leading to differences in sensory 
perception and food intake. 

Many foods are composed of multiple components with considerably different mechanical properties 
on micro- or macroscopic length scales, for example breads with toppings or soups with vegetable 
pieces. Mechanical contrast between food components can lead to contrasting texture sensations, 
which can enhance palatability and reduce energy intake. The influence of mechanical contrast 
caused by inhomogeneity in food structure at different length scales on oral processing behaviour, 
sensory perception and palatability is discussed. Combining food components with contrasting 
mechanical properties at different length scales allows to control oral processing behaviour, bolus 
properties and determines texture perception and palatability.  
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Gels and glasses represent important soft matter classes in today’s food science and technology. 
Currently the vast majority of food gels is based on energy-intensive processes using heat and 
pressure treatments. On the other hand, colloid scientists have studied various liquid-solid transitions 
such as dynamical arrest, jamming and gelation intensively during the last decade, and the thus 
gained insight could potentially have a considerable importance for food science and the possibility to 
create food gels through different novel routes [1]. Here we will present first a short summary of our 
current understanding of colloidal gels and glasses, and introduce key concepts such as arrested 
spinodal decomposition or cluster formation and arrest in colloids with competing attractive and 
repulsive interactions. We will then demonstrate that such arrest scenarios can also be found for 
proteins and food colloids, and show how we can use a combination of scattering methods [1-6] 
(small-angle neutron and x-ray scattering, diffusing wave spectroscopy), confocal microscopy [1,5,6] 
and micro- [7] and macrorheology [1,5,6] to characterize the structural and dynamic properties of 
these complex liquids and solids at all relevant length and time scales. 
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Protein and fiber are two food constituents of growing interest to health-conscious consumers. In 
recent years, the molecular interactions between these two macromolecules and the behavior of 
mixed systems have received increasing research attention in order to design food product with 
extended applications. Indeed, protein and some constituents of fiber, especially pectin, can form 
complexes at acidic pH, mostly through electrostatic interactions between these two oppositely 
charged macromolecules. These complexes could improve the functionality of foods. However, 
studies on these complexes in real food conditions are missing and their utilization in culinary 
applications is inexistent. Approaches allowing complex formation using purified and crude fiber 
sources to develop functional ingredients will be presented. First, water (WAC) and oil (OAC) 
absorption capacity of plant proteins (soy, pea) and sugar beet pectin complexes were evaluated. The 
effect on WAC is source dependent as complexes produced with one soy protein source showed a 
24% increase (ratio 1:1) in comparison to individual biopolymers while the pea protein showed a 
reduction (25%). OAC of individual ingredients is increased (from 36-60%) after complex formation. 
Secondly, complex formation between proteins and blueberry puree was studied. After the addition of 
a whey protein isolate (WPI) into purees, the soluble pectin and protein contents and the viscosity of 
the resulting mixtures were determined. The decrease in the solubility of pectin and proteins showed 
the formation of protein-pectin complexes by electrostatic interactions at pH 3.5, contributing to 
increase the mixture viscosity. This mixture was also incorporated in a smoothie. The interactions 
between blueberry pectin of a puree and whey proteins allowed to design a novel functional ingredient 
that may be used to formulate high-fiber and high-protein beverages. Finally, the potential of using 
vegetable puree and some fractions for culinary innovations will be presented using parsnip as a 
model. The intelligent association between protein and fiber offer many new opportunities to add 
functional and nutritional values into processed foods and culinary applications. 
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Many food, pharmaceutical, cosmetic, and agrochemical products exist as dispersions of immiscible liquids 
(typically, oil and water), i.e., are emulsions. These emulsion products may undergo a range of physical and 
chemical destabilization events over their production, storage and end-use. Pickering emulsions have shown 
to provide definite advantages with respect to physical stability of emulsions compared to conventional 
emulsifiers, and are emerging in the food area. In addition to controlling the physical stability of food emulsions, 
preventing adverse chemical degradation is also a challenge, and in particular, oxidation of the unsaturated 
lipids. Often, lipid oxidation in emulsions is tentatively prevented by using oil-soluble antioxidants (e.g., 
tocopherols). These components are highly hydrophobic and therefore located inside the oil droplets. 
However, lipid oxidation is initiated at the oil-water interface, so the efficiency of these antioxidants is far from 
optimal and could be enhanced when present at the interface [1]. A way to achieve this could be to entrap 
antioxidants within Pickering particles, thus locating them at the droplet surface. In the present work, we study 
lipid oxidation in two Pickering emulsions stabilized by colloidal lipid particles (CLPs) [2], with the exact same 
composition, but with a different physical location of the antioxidant -tocopherol: either within the CLPs 
(Figure 1, left), or in the core of the oil droplets (Figure 1, right). Pickering emulsions containing the antioxidant 
in the CLPs oxidize slower and to a lesser extent compared to Pickering emulsions containing the antioxidant 
in the core of the droplet [3]. Although, according to our initial hypothesis, the interfacial localization of CLP-
entrapped antioxidant may explain these results, other possible mechanisms are currently under 
consideration, such as the possibility that antioxidant-loaded CLPs would behave as an antioxidant reservoir 
with progressive release in time. This work opens up new perspectives to develop physically and chemically 
stable food emulsions with high levels of unsaturated lipids, and optimized levels of antioxidants. 

 

  
Figure 1: Schematic representation of CLP-stabilized Pickering oil-in-water emulsions: (left) with α-tocopherol incorporated in 

the particles and (right) with α-tocopherol in the liquid oil droplets. 
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In the food industry, dairy proteins are often used to formulate emulsions. These animal-derived proteins have 
a high environmental impact and therefore there is a drive to replace them by plant proteins. It is challenging 
to fully replace dairy proteins by plant proteins in food emulsions, as this will affect the physicochemical stability 
of the emulsions and the final product quality (e.g., nutritional value and taste). Alternatively, a blend of dairy 
and plant proteins can be used to improve sustainability, while not compromising on functionality and product 
quality.  

In the present project, the use of blends of pea protein isolate (PPI) with whey protein isolate (WPI) or sodium 
caseinate (SC) to physically stabilise emulsions has been investigated. Emulsion stability, surface load and 
interfacial compositions were determined and compared to those of individual protein-stabilised emulsions. 
The d3,2 and surface load measured over a concentration range (0.2-1.6 wt.% protein) were the lowest for SC- 
and WPI-stabilised emulsions, and the highest for PPI-stabilised emulsions, whereas emulsions stabilised by 
the blends (1:1 ratio) had intermediate d3,2 values and surface loads. Although individual PPI and SC-stabilised 
emulsions showed some physical destabilisation over 14 days of storage, the WPI-PPI or SC-PPI blends 
formed stable emulsion systems, suggesting synergistic effects. In the case of the blends, both dairy proteins 
and plant protein adsorbed at the oil-water interface, but compositional rearrangements at the interface were 
noticed over three days. More specifically, whey proteins were able to displace pea proteins from the interface, 
which were themselves able to displace SC. However, such a displacement was possible only when the 
displacing protein was present in sufficient amount in the system. These effects are important to understand 
the stabilisation mechanisms of protein blend-stabilised emulsions, and to propose design rules for related 
applications.  

Keywords: Interfacial displacement, protein mixtures, dairy protein, plant protein, emulsion stability, SDS-
PAGE 
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In recent years, food-grade Pickering stabilizers have gained great interest, because of their ability to form 

very stable emulsions and foams. Food-grade Pickering stabilizers are often produced by cross-linking 

proteins, which typically results in a mixture of cross-linked particles and non-cross-linked proteins. This 

smaller material could potentially contribute to the interfacial behaviour of the total mixture. The aim of this 

work was to understand the interfacial properties of air/water interfaces stabilized by whey protein isolate (WPI) 

particle suspensions. The particles were produced by cold-induced gelation of WPI aggregates, using calcium 

nanocrystals. To understand the interfacial properties of the total mixture, we have studied the whole hierarchy 

of structures, including native WPI, WPI aggregates, and WPI particles by combining surface dilatational and 

shear rheology, and microstructure imaging using atomic force microscopy (AFM). 

Air-water interfaces were subjected to large amplitude oscillatory dilatation (LAOD) and shear (LAOS) using a 

drop tensiometer and a double wall ring (DWR) geometry coupled to a stress-controlled rheometer. The non-

linear responses of the LAOD and LAOS experiments were analysed using Lissajous plots of stress versus 

deformation. Lissajous plots of native WPI- and aggregates-stabilized interfaces in LAOD and LAOS showed 

a rheological behaviour of a viscoelastic solid, while interfaces stabilized by the particles tended to have a 

weaker and more fluid-like behaviour. 

The microstructure of the interface was analysed by imaging Langmuir-Blodgett films of the three protein 

systems using AFM. For the WPI interface, we found a highly heterogeneous structure in which the proteins 

form a dense clustered network. For the WPI particles we observed that they are present in the interfacial film, 

but are scattered throughout the film, separated by large areas, where smaller material is present. This 

suggests the presence of smaller material between the particles and also explains the weak layer found in the 

surface rheology experiments. The smaller material present in this WPI particle suspensions is surface active 

and plays an important role in interface stabilization, and could also influence the macroscopic properties of 

foams and emulsions. Based on these observations the WPI particle system does not behave as a classical 

Pickering system, but instead forms mixed interfaces consisting of particles and non-cross linked proteins.  
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Water-in-water (W/W) or aqueous two-phase system (ATPS) emulsions are finding increasing applications in 
diverse fields of technology, for instance as protocells [1], and reactors for the synthesis of hydrogel particles 
[2], and enzyme-laden microgels [3]. Successful ATPS emulsification depends on thermodynamic 
incompatibility between two (bio)polymers, causing segregative phase separation [4]. Herein, we demonstrate 
that hydrophobization of whey proteins, by grafting acetyl moieties and heat denaturation, makes the proteins 
immiscible with a co-charged polysaccharide solution (alginate). Addition of erythritol, which is a low-calorie 
and zero-glycemic sugar alcohol, to the hydrophobized protein solution, enhanced emulsification and 
increased the stability of the resulting emulsion. Subsequently, the acid-induced gel properties of the emulsion 
was studied by dynamic rheometry and confocal microscopy.  
Erythritol addition reduced the surface tension (at the air-water interface) of the hydrophobized protein solution, 
enhancing the incompatibility between protein and alginate. It also postponed the gelation time of the 
hydrophobized protein solution and resulted in formation of a softer gel. Confocal imaging of the emulsion gel 
confirmed micro-phase separation of alginate and the droplets aggregation in the protein-rich matrix.  
 
 
 
        A                                                                                                        B 
 
 
 
  
 
  
 
 
 
 
 
 
 
Fig. 1. A: G’, storage (circles) and G’’, loss (cubes) moduli of the alginate-in-whey protein emulsion gel 
measured by a frequency sweep test; and B: a typical CLSM image of the emulsion gel.  
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Challenges of public health and sustainable development require replacing in food products 
animal proteins by plant proteins. In this optics, it is crucial to understand the structure and 
kinetic of formation of a film of plant proteins in order to improve the control of emulsions and 
foams stabilized by these proteins. 
In this talk we will present experimental results on the behaviour interfacial properties of wheat 
gluten, sunflower and rapeseed proteins at liquid interfaces. Thanks to a combination of 
tensiometry, dilatational rheology and ellipsometry, rational physical pictures of the dynamics of 
the interfacial properties are achieved, for the various proteins and at both air/water and 
oil/water interfaces.   
For gluten proteins, a time-concentration superposition of the data is evidenced whatever the 
subphase concentration, which reveals that the kinetics of protein adsorption at the interface is 
dominated by bulk diffusion. We propose a consistent physical picture of the multistep 
diffusion-controlled irreversible adsorption of the gliadin proteins at an air/water interface, and 
evidence surface-induced conformational changes of the proteins followed by film gelation [1].  
Sunflower and rapeseed proteins by contrast do not reorganize once adsorbed at an interface 
and display a simpler dynamics of film formation. In addition the failure at high concentration of 
the time-concentration superposition of the tensiometry and viscoelastic data strongly suggest 
a surface-induced aggregation process, which we confirm with turbidity measurements.  
By quantitatively comparing the surface pressure dependence viscoelasticity of the various 
interfaces, we hightlight the crucial role on the behavior of plant proteins at liquid interfaces of 
the solvent quality and of the protein softness, that is discussed in regard to the protein 
structure. 
 

 
Figure 1: Air-water interface surface pressure master curves obtained for solutions of sunflower, 
rapeseed and wheat proteins comprised between 10-2 and 10g/L. 
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Food Oral Processing (FOP) is a key step for foods assimilation and the benefit of their nutrient properties, 
especially for elderly whom oral physiology is altered. The main objective of this process is to form a food 
bolus that can be swallowed safely. Nevertheless, most of the studies about relationships between FOP, 
oral physiology and food bolus properties focus on particle size and dental status, saliva is only partly 
considered. However, for cereal products, food bolus viscosity is a function of the added saliva [1], which 
evidences the interaction between food and saliva. Our aim is to establish a model to determine a coefficient 
that characterizes this interaction. 

To do so, we first study sponge cakes, one sample is standard and the other one is enriched with pea 
isolates. Artificial boluses composed of crushed sponge cake and a surrounding fluid, representative of 
saliva, are prepared. Four fluids are used: three of them are Newtonian, water and two Dextran solutions of 
viscosities 3mPa.s and 10mPa.s. The fourth fluid is shear thinning, composed of different salts and mucin 
distilled in water, as already used in different studies [2-4]. Viscosity measurements (shear and elongational) 
are realized using capillary rheometry, including Bagley’s corrections. The shear viscosity of boluses follows 
a power law model from which the consistency K can be derived. A phenomenological model of the 
consistency is obtained (Figure 1): K = K0 e-α ΔWC, where α is the interaction coefficient and ΔWC is the 
difference of water content between the food bolus and the sponge cake. Results also show that the 
viscosity plays a minor role, compared with its concentration. By varying properties of the surrounding fluid, 
the interaction between food and saliva can be assessed. 

 
 

Figure 1: Phenomenological model of the consistency for a standard sponge cake. Red line is a fit by an exponential function 
that gives the interaction coefficient: α = 12.3. 

 
This study is part of the project “Modelling interactions of Foods with SAliva during oral processing and 
application to the design of cereal foods enriched with plant proteins (MoFooSA)” that has been supported 
by the Region Pays de Loire, via the RFI project “Food for tomorrow”. 
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In this presentation, I will take examples from the work done at the food micro-
technology group of Wageningen University, and use them to illustrate how the insights 
can be used in mild separation technology, and in the production of novel foods.  

Ingredients used in food production revolve around a limited amount of crops, and 
mostly only the fruits of these crops, whereas for example the leaves and stems etc. 
could also be used. In order to be flexible, separation technology is needed to fractionate 
the starting materials. Membrane separation will be highlighted using results obtained 
with miniaturised membranes that help us uncover underlying mechanisms at colloidal 
scale, which has led to various discoveries for efficient fractionation. 

Besides, the functionality of the fractions is key for application. For example, whether 
animal based proteins can be replaced by their plant based counterparts is highly 
dependent on their surface activity. We have developed various microfluidic devices with 
which this can be monitored for small droplets and at short time scales. This allows 
screening, comparison of ingredients, and even establishing a link with more classic 
process technology, and also digestive functionality. Also here we started at the colloidal 
scale and used these insights to design products starting from nano- and micrometer 
scale.  

 



 

New approach for the characterisation 
of dairy protein foams stability 

Alexia Audebert1, Sylvie Beaufils2, Valérie Lechevalier1, Cécile Le Floch-Fouéré1, Arnaud 
Saint-Jalmes2, Simon Cox3, Nadine Leconte1, and Stéphane Pezennec1 

1 STLO, UMR1253, INRA, Agrocampus Ouest, F-35000, Rennes, France  
2 Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000, Rennes, France  
3 Department of Mathematics, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3BZ, United 

Kingdom  
 

E-mail contact: stephane.pezennec@inra.fr  
   

   

The main destabilisation processes in aqueous foams are liquid drainage, coalescence and 
disproportionation. In food sciences, the measurement of protein foam stability generally integrates all of 
them in a “global stability”, and a challenge is to correlate the stability and rheology of foams to the 
properties of interfaces.  

We adopted a multi-scale approach by combining the interfacial rheology of proteins adsorbed at the air–
water interface, the dynamics of protein films after T1 topological rearrangements (Fig. 1), and macroscopic 
foam characterisations: the foam stability against drainage was evaluated by following the evolution of the 
liquid fraction as a function of time and height (Fig. 2) [1], and the foam complex modulus and yield stress 
were measured under oscillatory shear. We investigated the behaviour of dairy proteins (whey protein isolate 
and purified β-lactoglobulin), either in the native state or after modification by dry-heating and/or pH 
adjustment prior to dehydration.  

Our results show that small-extent structural modifications of proteins have a dramatic impact on interfacial 
rheology, liquid film dynamics, foam stability and foam rheology.  

This approach, correlating multiple investigation scales, sheds light on the contribution of the interfacial 
rheology to protein foam properties, in particular through the involvement of film relaxation dynamics.  
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Figure 

1: T1 topological rearrangement between 5 films. 

Figure 

2: Measurement of foam free drainage 
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Whey proteins are of interest because of their nutritional and functional properties in food application. Heat-
induced aggregation coupled with process conditions of whey proteins gives them new functional properties 
that can be used to impart specific structural and physical properties of food products. Then, aggregation 
process needs to be well understood and controlled to design specific functional whey protein aggregates.  

Most of previous studies has focused on the role of the physicochemical conditions on the structure and size 
of protein aggregates [1], whereas process parameters have not been clearly investigated. In this study we 
will study the role of process parameters, i.e. shear rate, heat treatment and time on the size and structure of 
protein aggregates to control the aggregation process.  

However, the main difficulty to understand the respective role of each parameter is to separate the kinetics of 
denaturation and aggregation and the flow from the thermal history. In this study, we have developed a 
continuous process of aggregation at small-scale (<1 mm) to have laminar flow conditions for various shear 
rates and a fine control of the thermal history. Thermal and flow conditions can thus be controlled 
independently. This feature is clearly a novelty compared to previous studies [2] in which aggregation was 
limited by heat transfers. This small-scale continuous process allows us to vary, in one hand, the residence 
time and thus to establish the kinetics of aggregation, and in the other hand, the shear rate up to 500s-1.  
This set-up has been used to test the role of several process parameters on the kinetics and structure of whey 
protein aggregates by small angle X-ray scattering (SAXS) techniques for given physicochemical conditions 
(pH and ionic strength) leading to sub-micrometric aggregates. We follow the kinetics of aggregation from the 
protein scale (few nanometres) to the aggregate scales (< 1 µm).  Structure of whey protein aggregates larger 
than few micrometres are also investigated by quantitative fluorescent microscopy and image analysis 
methodology developed for this purpose.  

We show that the kinetics leads to the formation of new aggregates and not to their enlargement. Secondly, 
we show that the flow process has a large impact on the size and structure of the aggregates: the size of the 
aggregates is increased by a factor 3 when comparing the ones obtained under static conditions and the ones 
obtained under flow, whereas their internal structure remains unchanged. The shear rate, on the other hand, 
leads to an increase of the size of the aggregates without increasing their density.  
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Abstract 

As an easily accessible, renewable and environmentally friendly material, and a pivotal part of the human 
diet, starch holds great promise for a wide variety of structural, pharmaceutical and biomedical applications. 
Starch hydrogels are unique three-dimensional, semi-solid structures able to hold a large amount of water 
and other solvents with unique rheological, physicochemical and biochemical properties. As representatives 
of molecular gels, starch hydrogels simultaneously feature domains with highly distinct manner of 
organisation, packing and molecular mobility, which introduces considerable difficulties to their full 
experimental characterisation. 

In this project, we have applied NMR methods specifically tailored to the identification of rigid and mobile 
components, such as 1H-13C CP and CPSP-MAS NMR1–6, which are novel to the field of starch hydrogels. 
Hydrogel materials were produced by different hydrothermal treatment methods using five separate maize 
cultivars, featuring different levels of composite glucans, degree of modification and resistant starch 
character. 

Our initial investigations resulted in the identification of previously unpublished distinct carbon sites 
exhibiting increased mobility in low amylose starch hydrogels, when compared to their high amylose 
counterparts. Data obtained from these investigations were cross-referenced with rheological and thermal 
analyses of the maize hydrogels. These findings were hypothesised to be a consequence of the 
predominantly linear structure of amylose, compared to its highly branched glucan analogue, facilitating 
inter-chain association during the period of gelatinisation. 

We aim to use our findings for the development of previously unexplored starch hydrogel-based materials 
for applications in the pharmaceutical and biomedical sphere, as novel biocompatible prosthetic implants 
and “smart” drug delivery methods as targeted, stimuli-responsive and controlled drug release loading 
materials. 
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Soy gels at different crosslink densities has been subjected to immersion in a simulated gastric juice. Via 
titration the pH of the juice is kept at pH=2 level. Due to strong buffering effect of the soy protein the pH inside 
the gel is only slowly changing. Soy protein is a polyelectrolyte gel, whose charge depends on pH due to 
dissociation of acidic and basic groups.  

We have modelled the experiments via extending Flory-Rehner theory with Donnan-equilibrium, to account for 
the ionic contribution to the swelling pressure, cf.[1]. The swelling pressure is plugged into Darcy’s law to 
describe swelling kinetics. Furthermore, the kinetics in the total of bound and free protons inside the gel has 
been modelled, taking into account diffusion of free protons, convection of protons due to swelling, and the 
buffering capacity of the soy gel.  

The experiment and model show a rich dynamics of the gel, which shows shrinkage after an initial swelling 
stage. This indicate also a rich dynamics inside in-vivo gastric environment, where also the action of pepsin 
enzyme has to be added to the system. Its activity is strongly dependent on pH, and its diffusion is modulated 
by the mesh width of the shrinking/swelling gel. 

 
[1] English, Anthony E and Tanaka, Toyoichi and Edelman, Elazer R. Equilibrium 
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Heat treatment of whey proteins is known to increase the functionality of these high nutritional proteins such 
as their viscosity or gelling properties [1]. While heating a whey protein solution is a widespread practice, 
heating them as a powder, or dry heating, is a less known process. We have experimented the dry heating at 
100°C of whey proteins with traces of lactose. Dry heating of a whey protein powder at pH 9.5 has been shown 
to generate microparticles [2,3]. Is has been demonstrated that crosslinks of whey proteins in the powder 
during its dry heating make the powder partially insoluble, leading to microparticles having a shape close to 
that of the powder. Due to the porous structure of the powder, the microparticles formed by dry heating are 
able to entrap a huge amount of water (20-40 g water/g microparticle), with a yield of formation > 0.5 g 
microparticle/g of powder. They could be used as a 100% dairy ingredient in food products to increase their 
viscosity 

With the aim to understand the process of formation of these microparticles, experiments were performed with 

pure -lactoglobulin (-Lg) in solution stored at 4°C with or without lactose, at pH 9.5 or 6.5, then freeze-dried 
and finally dry heated. 

Analyses were performed at 3 steps, during storage of the -Lg solution before its drying, after its drying and 

after dry heating of the -Lg powder. Residual native proteins and secondary structures of proteins, the 

browning of powders, the yield of conversion of -Lg into microparticles and their ability to entrap water were 
measured along the process. 

In conclusion, the alkaline pH and the presence of lactose are crucial for the production of microparticles, but 
these two factors act at different steps of the process. The alkaline pH is only required during the storage of 

the -Lg solution before drying and hardly plays a role during dry heating, while the presence of lactose is only 

crucial during the dry heating and is useless during the storage of -Lg solution. 

These results help understanding the formation of microparticles by dry heating. 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 1: experiment plan  
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In this study we explore the functional properties of whey proteins found in the milk serum. Whey 
proteins are well known for their texturizing properties such as gelation, stabilization of foams and emulsions, 
film formation (Nicolai, Britten, and Schmitt, 2011). Current consumer demand for heathier, simpler ingredients 
in foods produced the terms such as “clean label” and “clean eating”. Whey proteins can be considered as an 
excellent “clean label” alternative to traditional E-number texturizing ingredients used in products, such as 
gelatine or modified starches, because they are percieved as healthy by most consumers and do not require 
approval by the European Food Safety Authority. 

It was previously established that during heating at certain conditions whey proteins form suspensions 
of stable aggregates. Three types of aggregates with different functionality have been discribed in the literature 
– fractal aggregates, microgels and fibrils, with fractal aggregates having the most interesting functional 
properties for applications in food products. In particular, stable suspensions of fractal aggregates can form 
gels at ambient temperatures upon acidification or addition of salt – a process known as “cold gelation”. Cold 
gelation of whey protein fractal aggregates was previously studied in detail in our resarch group. It was found 
that cold gelation is a thermally activated process with an activation energy of 210 kJ/mol for gelation induced 
by addition of calcium chloride and 155 kJ/mol for acid-induced gelation (Kharlamova, Nicolai, and 
Chassenieux, 2018 a&b). 

On the other hand, gelation of complex association colloids called casein micelles, that represent the 
major protein fraction in milk, was found to be characterized by a critical gelation temperature tc. Gelation of 
micelles in water suspensions does not occur even after prolonged heating at tempratures below tc, while 
happens almost immediately at and above tc (Thomar & Nicolai, 2016). 

In presented talk we discuss gelation of mixtures of casein micelles with whey protein fractal 
aggregates (Fig. 1). We show that addition of fractal aggregates to micelles results in formation of a hybrid 
protein network at a lower temperature. The mechanism of gelation of such systems is suggested. The results 
of the study can be used as a benchmark for application of whey protein aggregates as a gelling agent in more 
complex dairy systems. 

 
 
 

 
Figure 1: Schematic representation of gelation in mixtures of micelles with fractal whey protein aggregates. 
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Sodium caseinate is a milk protein which is used in pharmaceutical products and food. This protein is stable 
in water at pH=7 due to surface charges that induce an electrostatic repulsion. However, as the pH 
decreases and reaches this isoelectric point, pI=4.6, electrostatic repulsions vanish and the Van der Waals 
forces induces the flocculation of the caseinates. Here, we add GDL to the caseinate dispersion, a molecule 
that slowly and homogeneously reduces the pH from 7 to 3 and therefore leads to gelation [1]. Using a 
combination of rheology, X-ray scattering and confocal microscopy we study the gelation process. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1: (a) rheology: evolution of the elastic G’ and loss G’’ modulus as a function of time and pH. (b) Saxs: evolution of the 
scattering intensity as function of the wave number q and time.  (c) Confocal microscopy: snapshot of the gel at different 

times.  
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Polysaccharides are widely employed in many industries such as food or cosmetic mainly to stabilize 

oil-in-water emulsions and to control their rheological properties. Among the others, xanthan gum is 

the most used due to its outstanding thickening properties of aqueous solutions. However, because of 

its poor interfacial properties, it requires the addition of an emulsifier to disperse and stabilize the oil 

droplets. Unfortunately, the use of low molecular weight surfactants has many disadvantages related 

to toxicological and environmental considerations. On this basis, macromolecular surfactants have 

been developed during the last decades, most being synthetics while the nowadays demand of natural 

ones is considerably growing. To overcome this problem, octyl residues were grafted onto the 

backbone of xanthan to confer new amphiphilic properties1. Moreover, xanthan can adopt two different 

conformations2, with distinct rheological properties3 depending on the experimental conditions: an 

ordered semi-rigid helical structure or a disordered flexible coil. 

The objective of the present work is to study and understand the phenomenon involved in the stability 

of oil-in-water emulsions containing amphiphilic xanthan.  

Oil-in-water emulsions using no surfactant but containing pristine or modified xanthan have been 

studied and compared. As expected in emulsion, unmodified xanthan is not able to stabilize the 

emulsions as phase separation occurred within only few hours. Oppositely, emulsions obtained with 

modified xanthan are stable over months (see fig. 1).  

These results clearly demonstrate the high potential for hydrophobically modified xanthan as 

emulsion’s stabilizer which has been studied as a function concentration and grafting density. 

 
 
 
 
 
 
 
 
 
Figure 1. Oil in water emulsions containing 1g/L of pristine xanthan one day after preparation (left) 
and modified xanthan 2 months after preparation(right) 
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We will discuss the rheological properties and microstructure of mixture of native kappa carrageenan (-

car) and iota carrageenan (-car) in the presence of salts (CaCl2 and/ or KCl). For -car solution, increasing the 
CaCl2 between 5 and 40 mM increased the elastic modulus (Gel) and the gelling temperature (Tg). However, 
further increase of the CaCl2 concentration did not lead to a further increase of the elasticity. Adding CaCl2 
between 5 and 20 mM to -car also enhanced Tg and Gel, but in this case Gel remained constantly above 20 mM 

CaCl2. Mixtures of -car and -car showed a two-step gelation process at temperatures that coincided with the 

one of pure -car and -car solutions, respectively. However, the elastic modulus of the mixtures at low 
temperatures was much higher than the sum of those of the pure systems within the same conditions.  

For the gelation of mixed gel in presence of both KCl or CaCl2, Gel was higher than samples with just one 
type of salt at the same concentration. Gel increased when increasing the fraction of CaCl2 in mixed salt up to 
50%, further adding CaCl2 led to a decrease of the storage modulus. However, Tg increased gradually with 
increasing fraction CaCl2. At a fixed ratio of KCl and CaCl2 of 50:50, Gel of mixed carrageenan increased with 
increasing total salts up to 40 mM and remained the same at higher concentrations (Fig.1). 

In parallel, the influence of these salts on the structure of mixed gels was studied by confocal laser 

scanning microscopy (CLSM). In the mixtures, -car and -car could be distinguished because they were 

covalently labelled with different fluorescent dyes. CLSM images show that -car in pure or mixed gel is 

distributed more homogeneously than -car both in presence of KCl and/or CaCl2. However, -car appears more 

homogeneously distributed in the mixed gel than in the individual gels. In addtion, -car in the mixed gels with 
mixed salts appear more homogeneous than that in presence of CaCl2. Furthermore, the tubidity of mixed 
systems was evaluated as a function of temperature and time. The results showed that there are synergistic 

effects between -car and -car in mixed gels and between KCl and CaCl2 in gels with mixed salts. 
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Fig 1. Elastic modulus of mixed carrageenan at 5-5 g/L after one hour at 5 °C as a function of total CaCl2 and/ or 
KCl concentration. 




